Studying the multichromatic number of the almost s-stable Kneser graphs
نویسندگان
چکیده
In the early 1970’s Gilbert introduced n-tuple colorings of graphs motivated by practical problems. After this Saul Stahl studied properties these and formulated conjecture on multichromatic number Kneser graphs. Motivated Stahl’s we will investigate almost s-stable
منابع مشابه
The multichromatic numbers of some Kneser graphs
The Kneser graph K(m, n) has the n-subsets of {1, 2 . . . . . m} as its vertices, two such vertices being adjacent whenever they are disjoint. The kth multichromatic number of the graph G is the least integer t such that the vertices of G can be assigned k-subsets of {1, 2,... ,t}, so that adjacent vertices of G receive disjoint sets. The values of xk(K(m, n)) are computed for n = 2, 3 and boun...
متن کاملThe chromatic number of almost stable Kneser hypergraphs
Let V (n, k, s) be the set of k-subsets S of [n] such that for all i, j ∈ S, we have |i−j| ≥ s We define almost s-stable Kneser hypergraph KG ( [n] k )∼ s-stab to be the r-uniform hypergraph whose vertex set is V (n, k, s) and whose edges are the r-uples of disjoint elements of V (n, k, s). With the help of a Zp-Tucker lemma, we prove that, for p prime and for any n ≥ kp, the chromatic number o...
متن کاملOn the Chromatic Number of Generalized Stable Kneser Graphs
For each integer triple (n, k, s) such that k ≥ 2, s ≥ 2, and n ≥ ks, define a graph in the following manner. The vertex set consists of all k-subsets S of Zn such that any two elements in S are on circular distance at least s. Two vertices form an edge if and only if they are disjoint. For the special case s = 2, we get Schrijver’s stable Kneser graph. The general construction is due to Meunie...
متن کاملSymmetries of the Stable Kneser Graphs
It is well known that the automorphism group of the Kneser graph KGn,k is the symmetric group on n letters. For n ≥ 2k + 1, k ≥ 2, we prove that the automorphism group of the stable Kneser graph SGn,k is the dihedral group of order 2n. Let [n] := [1, 2, 3, . . . , n]. For each n ≥ 2k, n, k ∈ {1, 2, 3, . . .}, the Kneser graph KGn,k has as vertices the k-subsets of [n] with edges defined by disj...
متن کاملThe achromatic number of Kneser graphs
The achromatic number α of a graph is the largest number of colors that can be assigned to its vertices such that adjacent vertices have different color and every pair of different colors appears on the end vertices of some edge. We estimate the achromatic number of Kneser graphs K(n, k) and determine α(K(n, k)) for some values of n and k. Furthermore, we study the achromatic number of some geo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Gradus
سال: 2022
ISSN: ['2064-8014']
DOI: https://doi.org/10.47833/2022.1.csc.001